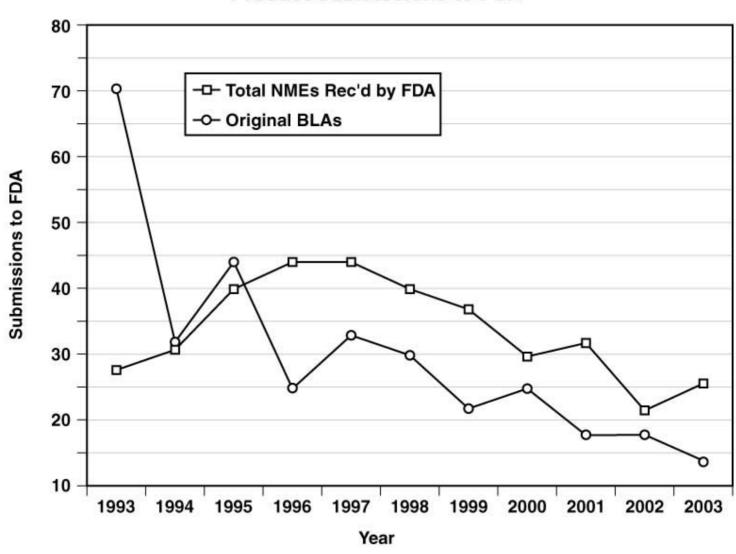
The Role of Biotechnology and Bioinformatics in FDA's Critical Path Initiative

Janet Woodcock M.D.
Deputy Commissioner/Chief Medical Officer
US Food and Drug Administration
September 25, 2007


Thesis of FDA's Critical Path Initiative

- The drug and device development processes need to be modernized
- The clinical use of these medical products needs to be improved
- The healthcare system suffers from serious problems, many related to product use
- New scientific advances, especially in biotechnology and bioinformatics, have the potential to address these issues, but must be applied specifically to the problems

The Drug Development Process Needs Improvement

- Current development very challenging
- Pipeline problems persist
- Post phase 1 failure rate increasing
- Drug safety issues lead to calls for larger and longer premarket trials
- Productivity in crisis: ever-increasing investment and decreasing output

10-Year Trends in Major Drug and Biological Product Submissions to FDA

Ten Year Trends Worldwide

- 2004 marked a 20-year low in introduction of new medical therapies into worldwide markets
- DiMasi, et al. (2003) estimated that the capitalized cost for self-originated NMEs developed by multinational pharma & approved in 2001 would be about \$1.1 B per NME.
- Disincentive for investment in less common diseases or risky, innovative approaches

Issues in Healthcare

- US healthcare costs becoming politically? or societally? unsustainable (e.g., debate about drug importation)
- With Medicare Part D federal government becoming highly involved with payment for medications
- One result: demand for more "value" i.e., greater certainty, about outcomes of therapy
- Increasing pressure for comparative studies, long term outcome trials, etc, premarket

These Trends are Not Sustainable

- Rising costs of development, coupled with continuing high clinical failure rate are on a collision course with societal demand for more certainty prior to product approval
- Despite these problems, unmet medical needs persist and never has there been more scientific opportunity for addressing them
- A new development model or paradigm is needed

FDA's Critical Path Initiative

- Launched in 2004 with "Innovation/Stagnation" white paper
- Calls for rapid incorporation of new science into medical product development pathways to improve informativeness of process as well as predictability
- 2006 Report and List: 76 scientific projects as examples of needed approach

- Most non-technical stakeholders (Congress, medical community, etc) did not grasp this issue
- FDA often blamed for development problems undiscovered safety issues as well as slowdowns of important drugs and devices
- Agency generally not funded for applied science to improve development
 - Biologics and device programs have (very modest) research funds
 - Drugs program does not have any significant funding

Reaching Agreement on Addressing the Problem

- Stakeholders such as patient advocacy groups, medical professional societies, and some academics rapidly on board
- Industrial representatives agreed with problem definition but not sure of its relative importance
- Slow buy-in by FDA staff (generally group-bygroup as projects in their regulatory area are addressed)
- Consensus reached over time
 - IMI in Europe

If We Agree on Problem: Where Will Funding Come From?

- Critical Path proposed collaborative ways of accomplishing objectives
- Funds are scarce—so pool resources, especially those that have been underutilized
- Use industry data generated for compound development for additional purposes
- Use NIH-funded trials and research to help qualify promising biomarkers
- Utilize industry trials for additional purposes

- Biomarker Qualification
 - In-vitro diagnostics
 - Imaging
 - Preclinical toxicogenomics
- Clinical Trial Modernization
- Bioinformatics
- Modernizing Manufacturing
- Pediatric Treatments
- Public Health Emergencies

How Do These Topics Fit With Subjects of this Workshop?

- New biomarkers will be the results of biotechnology
 - Genomic, proteomic, metabolomic and other molecular in vitro assays
 - Molecular and functional imaging in vivo
- Bioinformatics will be the means to connect biomarker information with clinical trial data and surveillance data to provide the clinical meaning
- Many new therapeutic products will result from biotechnology

Biomarker Development

Bioinformatics

Biomarker Development

- Framework for adoption and regulatory use
- International progress
- Pharmacogenomics
- Safety biomarkers
- Cancer
- Targeted therapy
- Imaging

- Previous concept of biomarker "validation" had slowed field
- Few biomarkers developed to the point of regulatory usefulness
- Developed concept of "qualification" = fitness for use: a contextual definition
- Realization that different levels of evidence appropriate for different uses

Conceptual Framework for Biomarker Qualification and Regulatory Acceptance: Progress

- Broad acceptance of notion of "qualification" or "fitness for use"
- Regular meetings between CDRH and CDER on use of diagnostics with drugs
- Formal biomarker qualification process set up at CDER
- Agency-wide biomarker qualification process being developed

Biomarker Framework

- FDA concept paper on topic due before the end of this calendar year
- Agency review divisions being surveyed on their use of and terminology for biomarkers (highly variable)
- FDA evaluating a qualification package and more are expected
- Dissemination methods under discussion

International Progress on Biomarkers

- Biomarker discovery and development a major theme of EU's "Innovative Medicine Initiative" (IMI)—proposed funding 1B Euros over 2007-13 from EU, with matching contributions from industry
- EMEA and Japanese regulators participating in FDA biomarker qualification process
- Step 2 guidance at ICH on pharmacogenomics terminology (E15)

Biomarker Collaborative Efforts

- The Biomarker Consortium": Foundation for NIH FDA/NIH/PhRMA/BIO and many other partners
- MACQ Consortium: FDA/NIST/NIH and many others
- C-Path Institute, Tucson, AZ: Critical Path effforts
- Duke University/FDA: cardiac safety

Pharmacogenomics

- FDA instituted "voluntary genomic data submission" process in 2006
- Safe harbor approach for discussing genomic findings with regulators
- Multiple submission and extensive information exchange since then
- Expansion to vXDS: voluntary eXploratory data submission

Pharmacogenomic Biomarkers

- Announced relabeling: 6MP, irinotican, warfarin, codeine...more to come
- Policy arena: ASR guidance, draft IVDMIA guidance causing a great deal of controversy
- "Pharmacogenomic Data Submissions: Companion Guidance" issued 8/07

Safety Biomarkers

- Side effects don't happen to everyone: so what causes a specific individual to have one?
- Need to improve drug safety through better mechanistic understanding of AEs
- Certain biomarkers may be low hanging fruit in improving drug safety
- Opportunities: pharmacogenomics; genetic basis of AE's, cardiac repolarization, new empirical safety biomarkers

Safety Biomarkers: What are the Obstacles to Progress?

- Another area where "no one has been in charge"
- Much academic research in this area
- Real world always more complex and requires much more study
- Consortia presented today are taking first steps, will need worldwide cooperation to achieve robust clinical qualification
- Need links with informatics-based safety surveillance and datamining

Biomarkers in Cancer

- FDA has robust partnership with NCI (IOTF)
- OBQI = Oncology Biomarker Qualification Initiative: FDA/NCI/CMS
- Cancer steering committee of "The Biomarker Consortium"
- AACR/FDA/NCI project on technical aspects of biomarker development
- ASCO/FDA/NCI project on clinical trials using markers (e.g., adaptive trials)

Biomarkers and Targeted Therapy: Progress

- Project with C-Path Institute/NCI
- FDA plans to issue Drug-Diagnostic codevelopment guidance this fall
- Need acceptance of trial strategies that allow for study of dx and drug performance within same development program: particularly various types of adaptive designs; these are being explored
- Beginning to see development plans including biomarkers for enrichment/targeting

- Great promise—slow progress
- Need to enhance agency review function
- Alzheimer's Neuroimaging Initiative one effort to study natural history along with imaging biomarkers
- Need way to support general human research use of molecular probes
 - Without repeating preclinical workup
 - With due respect to IP

Biomarkers: Overall Issues

- Pharmaceutical industry experiencing financial concerns—some reluctance to embark on collaborative projects
- Other funding sources for biomarker qualification remain tenuous; NIH in general more focused on basic research
- Clinical skepticism remains: confusion with surrogate endpoint problems??
- Insurers undervalue diagnostics: lack of viable business model for IVDs a problem; payers want outcomes data for new markers

Critical Path Efforts in Bioinformatics

- Quantitative disease modeling and simulation
- FDA's internal informatics systems
- The future for medical product surveillance

- FDA has created several quantitative disease models and presented analyses during Phase 2 meetings
- Such models capture clinical natural history along with known biomarkers and effects of interventions
- Clinical trial data on specific agent can be incorporated: ie, PK/PD
- Conduct simulations of efficacy trials

Bioinformatics: FDA Systems

- Bioinformatics Board Structure set up at FDA supported by Critical Path Programs, Office of the CIO, and Office of Planning
- Goal: Agency wide systems
- Five Business Review Boards (BRBs), to set business needs for specific crossagency business processes

Bioinformatics

- Data standards council also supported by CP
 - Relevant data standards to HL-7
 - Structured product label standards
- Pertinent BRBs:
 - Premarket: electronic submission, tracking and review processes
 - Postmarket: electronic adverse event reporting and database management
 - Quality: manufacturing regulation and tracking inspections, product movement
 - Scientific computing/computational science: needs of laboratories and quantitative scientists

Bioinformatics: Future

- Why focus on these agency-wide systems? Part of "information supply chain"
- FDA needs a systematic method of knowledge management in order to regulate efficiently
- Supported by agency reviewers and scientists
- Efficient transfer of regulated product information across various sectors
- Create a structure that can link findings in the health care system to what is known scientifically
- Open the door for datamining and other techniques

What's Next for Critical Path?

- Depends in part on funding
 - Government FY begins 10/1
 - FDA may not have an appropriation then
 - PDUFA renewal still before Congress
 - Congress discussing establishment of FDA foundation to support Critical Path research
- External collaborations robust and will grow
- Centers poised to aggressively take up new projects if resources available

Areas of Focus in '08

- Quantitative disease models
- Drug-Diagnostic co-development
- Nanotechnology
- Clinical trial modernization
- Numerous indication-specific projects
 - Pain
 - Cancer
 - Rheumatic diseases

Quantitative Disease Models

- Good early progress at FDA
- In my opinion, this is part of the future of drug development
- Basis for systematizing biomarker information linked to clinical course; simulations of interventions
- Needs infusion of resources at FDA

Drug-Diagnostic Co-Development

- Issuance of guidance: policy and scientific development
- Procedurally, will require close CDER and CDRH collaboration
- Methodologic approaches to development program will keep advancing
- Hope to see more actual cases: linking up drug therapy with biotechnological information and bioinformatics

What is the Vision for Drug Development of the Future?

- Preclinical toxicology and clinical development move from empirical evaluations to quantitative model-based learn-confirm cycles
- Necessary degree of confirmation pre-market dependent on indication (as is the case currently)
- Predictive capacity of development system greatly enhanced
- Amount of information generated by system greatly increased

What is the Vision for Drug Development of the Future?

Finally: We (collectively, collaboratively) will build a postmarket evaluation system based on the emerging EHR that will provide robust data on the real-world outcomes of the use of drug products, and will be linked to the preclinical and clinical development data: the ultimate in bioinformatics